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1. Introduction

Computational challenges of the contemporary world make iterative methods significant
‘team players’ in a sophisticated problem solving process, the overall success of which
largely depends on linear system solutions. In the context of homotopy zero curve tracking
algorithms [23], for example, to locate the difficult parts of the curve (sharp turning points)
a linear system solution in the correction phase of the stepping algorithm along the curve has
to be very accurate. In this paper, the ability of the generalized minimal residual algorithm
(GMRES) [19] to deal successfully with matrices of varying difficulty and to give high
accuracy solutions is investigated.

High accuracy computation is known to be especially important for some circuit design
and simulation problems, which involve nonsymmetric unstructured matrices [17]. These
problems have proven to be very difficult for any iterative method, and presently, only
specially tailored direct methods are used to solve them in a production environment. The
impact of numerical error is shown here to be significant in the postbuckling stability anal-
ysis of structures which exhibit snap-back and snap-through phenomena. A postbuckling
analysis amounts to tracking what is called an equilibrium curve, involving the solution
of linear systems with (tangent stiffness) matrices that vary along the equilibrium curve.
Mathematically, the snap-back and snap-through behavior of structures correspond to sym-
metric, structured, and strongly indefinite tangent stiffness matrices, which can be difficult
for Krylov subspace iterative methods. Along some portions of the curve the tangent stiffness
matrices may be well conditioned and positive definite—easy for iterative methods. This
wide variation in linear system difficulty clearly suggests an adaptive strategy. With good
preconditioning, the details of an iterative solver become less important, and for many real
problems good preconditioning strategies (e.g., multigrid) are available. For some classes of
problems, like analog DC circuit design and structural postbuckling stability analysis, good
preconditioning strategies are not known, and subtle implementation details of iterative
algorithms become paramount.

Section 2 develops the proposed subspace enlarging strategy for GMRES(k) and addresses
some technical issues of the GMRES implementation. Section 3 describes algorithms and
realistic test problems for numerical experiments. The numerical results are presented and
discussed in Section 4, and Section 5 concludes.

2. An implementation of the adaptive GMRES(k) algorithm

The GMRES algorithm [19] is used for solving a linear systemAx = b with an n × n

nonsymmetric invertible coefficient matrixA. Similar to the classical conjugate gradient
method, GMRES produces approximate solutionsxj which are characterized by a minimiza-
tion property over the Krylov subspacesK(j, A, r0) ≡ span{r0, Ar0, A2r0, . . ., A(j−1)r0},
wherer0 = b − Ax0 andj is the iteration number. However, unlike the conjugate gradient
algorithm, the work and memory required by GMRES grow proportionately to the iteration
number, since GMRES needs allj vectors to construct an orthonormal basis ofK(j, A, r0).
In practice, the restarted version GMRES(k) is used, where the algorithm is restarted every
k iterations, takingxk as the initial guess for the next cycle ofk iterations, until the residual
norm is small enough. Pseudocode for GMRES(k) is:
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choosex, tol

r : = b − Ax;
do while ‖r‖ > tol

v1 : = r/‖r‖;
for j = 1 step1 until k do

for i = 1 step1 until j do hi,j : = (Avj )
Tvi end do

ṽj+1 : = Avj −
j∑

i=1

hi,j vi;

hj+1,j : = ‖ṽj+1‖; if hj+1,j = 0 then gotoL1;
vj+1 : = ṽj+1

/
hj+1,j ;

compute‖rj+1‖ as described in [19];

if ‖rj+1‖ <= tol then gotoL1

end do

L1: e1 : = (1, 0, . . . , 0)T; Vj : = [v1, . . . , vj ];
solve min

y

∥∥ ‖r‖e1 − H̄j y
∥∥ for yj whereH̄j satisfiesAVj = Vj+1H̄j ;

x : = x + Vjyj ; r : = b − Ax

end do

In practice, the modified version of the Gram–Schmidt process is used in the construction
of an orthonormal basis for the Krylov subspace. The disadvantage of the restarted version
is that it may stagnate and never reach the solution, at least in an allowable amount of time.
The essence of the adaptive GMRES strategy proposed here is to adapt the parameterk

to the problem, similar in spirit to how a variable order ODE algorithm tunes the orderk.
Joubert [13] proposed an adaptive GMRES strategy that is more expensive and based on
different test criteria than that proposed here. With FORTRAN 90, which provides pointers
and dynamic memory management, dealing with the variable storage requirements implied
by varyingk is not too difficult. The parameterk can be both increased and decreased—an
increase-only strategy is described next followed by pseudocode.

The new adaptive implementation of GMRES(k) proposed here employs a stagnation
test for insufficient residual norm reduction over a cycle ofk steps. In this, GMRES(k) is
declared to have stagnated and the iteration is aborted if at the average rate of progress over
the last restart cycle ofk steps, the residual norm tolerance cannot be met in some large
multiple (bgv) of the remaining number of steps allowed (itmax is a bound on the number
of steps permitted). This estimated number of steps to achieve convergence is calledtestin
the pseudocode below. Slow progress of GMRES(k), which indicates that an increase in the
restart valuek may be beneficial [21], is detected with a similar test. This near-stagnation
test uses a different, smaller multiple (smv) of the remaining allowed number of steps. If
near-stagnation occurs, the restart valuek is incremented by some valuem and thesame
restart cycle continues. Restarting would mean repeating the non-productive iterations that
previously resulted in stagnation, at least in the case of complete stagnation (no residual
reduction at all). Such incrementing is used whenever needed if the restart valuek is less
than some maximum valuekmax. When the maximum valuekmax is reached, adaptive
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GMRES(k) proceeds as GMRES(kmax). The values of the parameterssmv, bgv, andm

are established experimentally and can remain unchanged for most problems.
The convergence of GMRES may also be seriously affected by roundoff error, which

is especially noticeable when a high accuracy solution is required. The orthogonalization
phase of GMRES is susceptible to numerical instability. LetQ be a matrix whose columns
are obtained by orthogonalizing the columns of a matrixM, and define the error matrix
E = QTQ − I . The error matricesEMGS, EHR using the modified Gram–Schmidt and
Householder reflection methods, respectively, to constructQ from M satisfy [3]

‖EMGS‖2 ∼ u cond(M), ‖EHR‖2 ∼ u

whereu is the machine unit roundoff. Clearly the orthogonalization with Householder re-
flections is more robust. The GCG-MR and GCG-OR methods of Axelsson and Nikolova [2]
are an alternative approach to controlling roundoff error. An implementation of GMRES(k)
using Householder reflections and its block version are given in [22]. (The convergence
properties of the block version on the test problems here are no better than those of the
point version, and so block versions are not considered further here.) In theory, the imple-
mentation of GMRES using Householder reflections is about twice as expensive as when
modified Gram–Schmidt is used, at least in terms of expense other than matrix–vector
products. However, the Householder reflection method produces a more accurate orthogo-
nalization of the Krylov subspace basis when the basis vectors are nearly linearly dependent
and the modified Gram–Schmidt method fails to orthogonalize the basis vectors; this can
result in fewer GMRES iterations compensating for the higher cost per iteration using
Householder reflections. Letej be thej th standard basis vector and all norms the 2-norm.
Pseudocode for an adaptive version of GMRES(k) with orthogonalization via Householder
reflections implemented as in [22] follows (call this algorithm AGMRES(k)):

choosex, itmax, kmax, m;
r : = b − Ax; itno : = 0; cnmax : = 1/(50u);
xtol : = max{100.0, 1.01avnz}u; tol : = max{‖r‖, ‖b‖}xtol;
do while ‖r‖ > tol

rold : = r;
determine the Householder transformation matrixP1

such thatP1r = ±‖r‖e1;

k1 = 1; k2 = k;
L1: for j : = k1 step1 until k2 do

itno : = itno + 1;
v : = Pj · · ·P1AP1 · · ·Pjej ;

determinePj+1 such thatPj+1v has zero components

after the(j + 1)st;

compute‖rj+1‖ as described in [19];
estimate condition number cond(AVj ) of GMRES least squares

problem via the incremental condition numberICN by
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DLAIC1 from LAPACK whereVj = [P1e1, . . . , P1 · · ·Pjej ];

if ICN > cnmax then abort;

if ‖rj+1‖ <= tol then gotoL2

end do

test : = k2 × log[tol/‖r‖]
/

log
[
‖r‖/

(
(1.0 + 10u) ‖rold‖

)]
;

if k2 <= kmax − m and test >= smv × (itmax − itno) then

k1 : = k2 + 1; k2 : = k2 + m;
gotoL1

end if

L2: e1 : = (1, 0, . . . , 0)T; k : = k2;
solve min

y

∥∥ ‖r‖e1 − H̄j y
∥∥ for yj whereH̄j satisfiesAVj = Vj+1H̄j ;

q : =
(

yj

0

)
; x : = x + P1 · · ·Pjq; r : = b − Ax;

if ‖r‖ <= tol then exit;
if ‖rold‖ < ‖r‖ then

if ‖r‖ < tol2/3 then

exit

else

abort

end if

end if

test : = k × log[tol/‖r‖]
/

log
[
‖r‖/

(
(1.0 + 10u) ‖rold‖

)]
;

if test >= bgv × (itmax − itno) then

abort

end if

end do

The rounding error of a sparse matrix–vector multiplication depends on only the non-
zero entries in each row of the sparse matrix, so the error tolerancextol is proportional to
the average number of nonzeros per rowavnz = (number of nonzeros inA)/n. In most
applications, the initial estimatex0 = 0; however, this is certainly not the case for homotopy
zero curve tracking, where the previous tangent vector provides a good estimatex0. Since
GMRES convergence is normally measured by reduction in the initial residual norm, the
convergence tolerance istol = max{‖r0‖, ‖b‖}xtol.

A possible symptom of AGMRES(k) going astray is an increase in the residual norm
between restarts (the residual norm is computed by direct evaluation at each restart). If the
residual norm on the previous restart is actually smaller than the current residual norm, then
AGMRES(k) terminates (this happened often on the test problems in Sections 3.1–3.3).
The solution is considered acceptable if‖r‖ < tol2/3, although this loss of accuracy may
cause the client algorithm (the ‘outer’ algorithm requiring solutions to linear systems) to
work harder or fail. A robust client algorithm can deal gracefully with a loss of accuracy in
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the linear system solutions. If‖r‖ >= tol2/3, AGMRES(k) is deemed to have failed. In this
latter case, the continuation of GMRES(k) would typically result in reaching a limit on the
number of iterations allowed and a possible repetition of‖rold‖ < ‖r‖ in later restarts. This
admittedlyad hocchoice oftol2/3 avoided failures for AGMRES(k) for all test problems.
AGMRES(k) may exceed an iteration limit when it is affected by roundoff errors in the
case of a (nearly) singular GMRES least-squares problem. The condition number of the
GMRES least-squares problem is monitored by the incremental condition estimate [2] as
in [4]. AGMRES(k) aborts when the estimated condition number is greater than 1/(50u).

3. Numerical experiments

A comparative study of the proposed adaptive version of GMRES(k) considers some other
versions of GMRES(k): the standard implementation of GMRES(k) [19], the adaptive
GMRES(k) with modified Gram–Schmidt orthogonalization, GMRES(k) with GMRES-
ILU(0) preconditioning [18], and the popular iterative method QMR [7]. A brief description
of the GMRES(k) with GMRES-ILU(0) preconditioning and QMR algorithms follows.

TheGMRES(k) with GMRES-ILU(0) preconditioningmethod is a variation of flexible
GMRES developed in [18]. Flexible GMRES(k) differs from the standard preconditioned
GMRES(k) implementation by allowing variations in preconditioning at each iteration. Let
Mi be the computed preconditioner at theith iteration. Then an iteratexk is given by

xk = x0 +
[
M−1

1 v1, . . . , M
−1
k vk

]
yk

whereyk is the solution to the GMRES least-squares problem and thevi are the same as
in the standard GMRES(k). Here the application ofMi corresponds to an ‘inner’ iteration
consisting of̃k � k steps of an ILU(0) preconditioned GMRES and with the iteration limit˜itmax � itmax.

Thequasi-minimal residualmethod QMR [7] is based on a modification of the classical
nonsymmetric Lanczos algorithm. Given two starting vectorsv1 andw1, the Lanczos al-
gorithm uses three-term recurrences to generate sequences{vi}L

i=1 and{wi}L
i=1 of vectors

satisfying

span{v1, . . . , vm} = span{v1, Av1, . . . , A
m−1v1}

span{w1, . . . , wm} = span{w1, A
Tw1, . . . .(A

T)m−1w1}

for m = 1, . . . , L, andwT
i vj = diδij , with di 6= 0, for all i, j = 1, . . . , L, whereδij is the

Kronecker delta.
An implementation of QMR based on the look-ahead Lanczos process avoids most break-

downs associated with Lanczos-type algorithms [6]. At thekth iteration, QMR computes
an iteratexk as

xk = x0 + V (k)z

where the columns of the matrixV (k) are the right look-ahead Lanczos vectorsv1, . . . , vk,
and the vectorz is the unique minimizer of∣∣∣∣∣∣||r0||e1 − H(k)

e z

∣∣∣∣∣∣
© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 275–297 (1998)
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whereH
(k)
e is ak × k block tridiagonal matrix augmented with a row of the formρeT

k .
Based on the conclusions of [5, 12, 15]incomplete LU factorizationwith zero fill in

(ILU(0)) andGill–Murray preconditioning are considered for nonsymmetric unstructured
and symmetric skyline structured matrices, respectively. LetZ ⊂ {(i, j) | |1 <= i, j <=
n, i 6= j} be a subset of the set of indices where the matrixA has zeros. Then the ILU
factorization ofA is given byQ = LU , whereL andU are lower triangular and unit upper
triangular matrices, respectively, satisfying

Lij = Uij = 0, for (i, j) ∈ Z

Qij = Aij , for (i, j) /∈ Z, i 6= j

Qii = Aii, whenever possible

The factors of the preconditioning matrixQ preserve the sparsity pattern ofA. The Gill–
Murray preconditioner [8] for a matrixA with a skyline sparsity pattern is a positive definite
approximationQ = GGT toA. The lower triangular matrixG has the same skyline structure
as A, and is chosen such thatG is always well conditioned.

For future reference the considered algorithms will be called:

AGH — adaptive restarted GMRES with Householder reflections in the orthogonalization
phase;

AGS — adaptive restarted GMRES with modified Gram–Schmidt in the orthogonalization
phase;

FGS — flexible restarted GMRES with̃k = k/3, ˜itmax = itmax/20;
GS — standard implementation of restarted GMRES;

Q — three-term recursion QMR.

3.1. Circuit design and simulation

The circuit simulation test problems considered here are from [15] and [17], and are rep-
resentative of full-scale commercial design at AT&T Bell Laboratories. The DC operating
point problem is typically formulated as a system ofn equations inn unknowns, i.e.,
F(x) = 0, whereF : En → En, andEn is n-dimensional real Euclidean space. The
unknowns are voltages and branch currents and the equations represent the application of
Kirchoff’s current and voltage laws at various points in the circuit. Different circuit com-
ponents (resistor, transistor, diode, etc.) impose linear and nonlinear relations among the
unknowns. In present fabrication technologies, circuit components are arranged in the form
of a graph that is almost planar, which limits the density of interconnections between circuit
elements, leading to a sparse Jacobian matrix. Figure 1 shows one of the circuits (Brokaw
voltage reference [17], ‘vref’) from which the test problems were derived.

Except for rather special cases, circuit equations lead to large nonsymmetric unstructured
matrix problems. In some cases, a circuit element like a transistor is replicated as a small
‘subcircuit’, which is installed in place of every transistor in the network. This policy results
in a replication of structurally identical submatrices throughout the overall system Jacobian
matrix. The sparsity pattern for the Jacobian matrix corresponding to one of the test circuits
(bgatt) with the diagonal blocks corresponding to the transistor subcircuits is shown in
Figure 2.

For each test problem, the various iterative methods were applied to a sequence of Ja-
cobian matrices obtained along a homotopy zero curve for that problem. For the rest of
the test problems described below, the iterative methods were actually implemented as
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Figure 1. Circuit diagram for the circuit ‘vref’

Figure 2. Jacobian matrix sparsity pattern corresponding to the circuit ‘bgatt’
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Figure 3. Space truss element

subroutines within the homotopy curve tracking software HOMPACK [25]. Specifically a
FORTRAN 90 version of the normal flow subroutine FIXPNS was used, resulting in the
(n + 1) × (n + 1) linear systems described in [12]—note that these are slightly different
from the linear systems for the sparse normal flow algorithm given in [25].

3.2. Space truss stability analysis

The stability characteristics of a space truss under multiple independent loads are described
in [11]. A brief derivation of the nonlinear equilibrium equations, whose solution by a
homotopy method generates the linear systems to be solved, is given here.

3.2.1. Finite element model
The axial deformation of the truss element in Figure 3 ise = L − L0, whereL0 andL are
the element lengths in the initial and deformed states, respectively. It follows from Figure
3 that

L = ‖1X‖ =
(

3∑
j=1

L2
j

)1/2

, L0 = ‖1X0‖ =
(

3∑
j=1

L2
0j

)1/2

,

Lj = L0j + 1j, 1X0 = Xb − Xa, 1 = Ub − Ua, 1X = 1X0 + 1

whereXa , Xb are the initial coordinate vectors at thea, b-end of the element;Ua , Ub are
the global displacement vectors at thea, b-end of the element; and the vectors1X0, 1X

coincide with the initial, deformed state of the element. The strain energy of the element is

π = 1

2
γ0e

2
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Figure 4. Lamella dome (21-degree-of-freedom)

whereγ0 = EA/L0 is the extensional stiffness of the element,E is Young’s modulus of
elasticity, andA is the cross sectional area of the truss element. The principle of virtual
work yields the equation of equilibrium

F(q, λ, Q̄) = −λQ̄ +
m∑

i=1

Ri = 0

whereq is the generalized displacement vector,λ is the scalar load parameter,Q̄ is the load
distribution vector, the vector functionF is the force imbalance, and

Ri
k = ∂πi

∂qk

, for k = 1, 2, . . . , n

The superscripti identifies them elements of the assemblage. Then × (n + 1) Jacobian
matrix becomes

DF = [
K, −Q̄

]
, whereK =

m∑
i=1

Ki, Ki =
[

∂2πi

∂qk∂ql

]
Ki is the tangent stiffness matrix of the elementi expressed relative to the generalized

displacements of the assemblage. It is computed by the code number method [24] from the
global stiffness matrix of elementi.

3.2.2. Structure 1
Figure 4 shows a 21-degree-of-freedom lamella dome. The joints lie on the surface of a
spherical cap with a radius of 157.25 inches. The support ring of the cap has a radius of
50 inches. All joints are located so that the structure is symmetric about the globalx1-axis
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Figure 5. Cylindrical shell geometry; load applied at A

which extends down vertically through the apex. The six support joints are fixed in all three
directions. Each member of the structure has a cross-sectional area of 0.18 square inches
and an elastic modulus of 2 900 ksi. The structure is subjected to a vertical load at the apex.

3.2.3. Structure 2
This is another lamella dome with a tension ring at the base having 69 degrees of freedom,
similar to Structure 1 but with a different geometrical arrangement of the free joints, different
joint constraints, and an unsymmetric loading pattern [11]. The effect of modeling a space
truss with truss elements in concentric rings is that changing the number of truss elements
changes the model and its behavior. Thus the dome problems with different degrees of
freedom considered here are qualitatively different, with different buckling loads.

3.3. Shallow shell stability analysis

Another test problem is the finite element analysis of a shallow cylindrical shell (Figure 5)
under a concentrated load [26]. The shell shown in Figure 5 is hinged at the longitudinal
edges and free along the curved boundaries.

The structure exhibits snap-through as well as snap-back phenomena, with horizontal
and vertical tangents. A finite element model based on a curved quadrilateral 48-degree-of-
freedom thin-shell element (Figure 6) is used to form the equations of equilibrium [14]. The
element has four corner nodes and each node has 12 degrees of freedom. Figure 6 shows the
undeformed middle surface of the shell element embedded in a fixed Cartesian coordinate
systemxi (i = 1, 2, 3). The Cartesian coordinatesxi (i = 1, 2, 3) of the middle surface are
modeled by polynomial functions of the curvilinear co-ordinatesξ andη with a total ofN
terms:

xi(ξ, η) =
N∑

j=1

Ci
j ξ

mj ηnj

where the constantsmj and nj define the powers ofξ and η, respectively, for thej th
term. The constantsCi

j are solved for based on the coordinatesxj at N selected points.
Precisely, bicubic Hermite polynomials in the curvilinear coordinatesξ andη are used as
basis functions for the interpolating polynomial.

The Cartesian coordinates of a given point are described by a system of parametric
equations

xi = f i(θ1, θ2)

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 275–297 (1998)
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where the parametersθα (α = 1, 2) serve as coordinates on the surface and can be regarded
as an arbitrary selected system.

The two base vectorsa1 anda2 are obtained as derivatives off with respect to each
componentθα:

aα = ∂f i

∂θα
ei = f i

αei

where theei are the standard basis vectors, and tensor notation is being employed. The unit
normala3 to the surface is given as

a3 = a1 × a2

|a1 × a2| = niei

whereni = ceijkf
j

1 f k
2 , eijk is the alternating symbol,c = 1/|a1 × a2| = 1/

√
a,

a =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ , aαβ = aα · aβ = f i
αf i

β

The metric tensoraαβ yields the first fundamental form of a surface ds2 = aαβdθαdθβ ,
where ds is the distance between two neighboring points atθα andθα + dθα (α = 1, 2).
The curvature tensorbαβ is given as

bαβ = ni ∂2f i

∂θα∂θβ
= nif i

αβ

After deformation, the same point has Cartesian coordinatesf̄ i = f i + ui , whereui

(i = 1, 2, 3) are the Cartesian components of the displacement vector. The 12 degrees of
freedom for each node areui , ui

1, ui
2, ui

12 (i = 1, 2, 3). In the deformed state, the metric
and curvature tensors take the form

āαβ = (f i + ui)α(f i + ui)β = f̄ i
αf̄ i

β , b̄αβ = n̄i f̄ i
αβ

where

n̄i = (ā)−1/2eijkf̄
j

1 f̄ k
2 , (ā)−1/2 ≈ (a)−1/2(1 − A/a)

A = (ε11a22 + ε22a11 − 2ε12a12)

The tangential strain measureεαβ is given as

εαβ = 1

2
(āαβ − aαβ) = 1

2

(
f i

αui
β + f i

βui
α + ui

αui
β

)
, i = 1, 2, 3

The curvature strain measureκαβ is given as

καβ = − (b̄αβ − bαβ

)+ 1

2

(
bδ
αεβδ + bδ

βεαδ

)
wherebδ

α is defined in terms of the contravariant tensoraβδ by bδ
α = bαβaβδ.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 275–297 (1998)



288 M. Sosonkina, L. T. Watson, R. K. Kapania and H. F. Walker

Figure 7. Load factorλ versus displacementu3 at the point A for the shell in Figure 5

The total potential energy of the model can be written as

5p(u) =
∫ ∫

A

[
W(εαβ(u), καβ(u)) − piui

]√
a dθ1dθ2

whereW is the strain energy density per undeformed middle surface unit of the shell,pi

(i = 1, 2, 3) are the Cartesian components of the externally applied load, andui (i = 1, 2,
3) are the Cartesian components of the displacement vector. The strain energyW is given
by

W = 1

2
Hαβλµ

(
εαβελµ + h2

12
καβκλµ

)
whereh is the thickness of the shell. The tensor of elastic moduliHαβλµ is defined as

Hαβλµ = Eh

2(1 + ν)

[
aαλaβµ + aαµaβλ + 2ν

1 − ν
aαβaλµ

]
whereE is Young’s modulus,ν is Poisson’s ratio,aαβaλβ = δαλ defines the contravariant
tensoraαβ , andδαλ is the Kronecker symbol.

The equilibrium equations of the model are obtained by setting the variationδ5p(u) to
zero, or equivalently

∇ 5 = 0

The Jacobian matrix of the equilibrium equations is obtained by finite difference approxi-
mations.

By symmetry, only a quarter of the shell is modeled using a 2× 2 mesh. The material
properties areν = 0.3 andE = 3.101 kN/mm2. An initial external concentrated load of
0.2 kN is applied. The equilibrium curve (load factorλ versus displacement at the point A)
of the cylindrical shell is shown in Figure 7, where the actual load is 0.2λ kN.
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4. Results

Tables 1–6 show the iteration counts and timing results for adaptive GMRES(k) with
modified Gram–Schmidt and Householder reflection orthogonalization procedures (AGS,
AGH respectively) and different subspace increment valuesm, standard GMRES(k) (GS),
flexible GMRES(k) (FGS), and QMR (Q). The notation AGH:2, for example, means AGH
with m = 2. Each of the iterative methods was applied to all of the test problems. An
iterative solver is deemed to have converged when the relative residual norm reduction
is less than max{100, avnz}u. The limit on the number of iterations is 30n. This number
is quite reasonable for moderate size realistic problems to be solved on modern computer
hardware, although for very largen a limit like 30

√
n is more appropriate. (Note from Tables

1–3 that 30
√

n does not suffice here.) This iteration limit requires explanation. First, ideally
convergence should occur in far fewer iterations thann, and for well preconditioned PDE
problems this usually occurs. However, for other classes of problems and for mediocre
preconditioners, more thann iterations may be required, and permitting 30n iterations
is preferable to permitting very large subspace dimensionsk or permitting failure of the
linear system solution server to return an accurate solution to the client homotopy algorithm.
Second, low accuracy might be acceptable if only Newton corrections were being computed
(although inaccurate Newton steps will wreak havoc on homotopy path step size control
algorithms), but inaccurate tangents may result in losing the path or in very small, inefficient
steps near extremely sharp turns of the homotopy path. Clearly high accuracy is not required
everywherealong the homotopy path, and effectively adjusting the linear system solution
accuracy along the homotopy path, while preserving reliable path step size control, is an
open research question.

All reported CPU times are for 64-bit IEEE arithmetic on a DEC Alpha 3000/600 worksta-
tion. The average, maximum, and minimum number of iterations per linear system solution
along the homotopy zero curve are shown in Tables 1–3. Note that in the FGS column the
numbers for thexk outer iterations of flexible GMRES(k) are given. Tables 5 and 6 report
the total CPU time in seconds required for an iterative method to obtain all the linear system
solutions needed for HOMPACK to track a homotopy zero curve for a certain arc length
specified for each problem. For the circuit problems (Table 4), the reported CPU time is the
time necessary to solve a certain number of linear systems arising along a portion of the
homotopy zero curve.

An asterisk denotes convergence failure, meaning any of the following occurred: (1)
desired error tolerance not met after 30n iterations, (2) dangerous near singularity detected
for the GMRES least squares problem, (3) residual norm increased between restart cycles
and was not small, (4) stagnation occurred for GMRES-like methods. In Tables 1–3, the
numbers in parentheses (k) show the restart valuesk whenever applicable. For AGS and
AGH, the notation (a → b) shows the initial restart valuea and the maximum restart value
b reached by the adaptive strategy anywhere along the homotopy zero curve. Results are
shown for FGS and GS in Table 1 for several different restart values.

The initialk values for the problems are chosen to compare GMRES-like methods when:
(1) GMRES(k) does not exhibit near stagnation behavior at all (n = 468 circuit problem,
n = 119 shell problem), (2) near stagnation causes an increase ink for all the matrices along
the curve (circuit problemn = 125), and (3) near stagnation is detected forsomematrices
along the curve. In the first case, adaptive and nonadaptive GMRES(k) perform the same.
In the second and third cases, GS withk the same as the initialk in AGMRES(k) reaches
no final solution, which has a disastrous effect on the outer (client) algorithm calling GS.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 275–297 (1998)



290
M

.S
osonkina,L.T.W

atson,R
.K

.K
apania

and
H

.F.W
alker

Table 1. Average, maximum, and minimum number of iterative solver iterations per linear system along homotopy zero curve for circuit design problems
(ILU(0) preconditioner)

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6 GS FGS Q

31 23,112,1 19,108,1 19,108,1 24,112,1 19,108,1 19,108,1 (2) * (2) * *
(2 → 6) (2→ 6) (2→ 6) (2→ 6) (2→ 6) (2→ 6) (6)12,48,1 (3)8,196,1

59 52,231,14 48,231,14 49,231,14 53,231,14 53,231,14 * (4) * * *
(4 → 6) (4→ 8) (4→ 10) (4→ 6) (4→ 8) (4→ 8) (10)9,10,7

67 587,1 150,344 557,1 050,339 471,734,286 576,1 578,291 613,1 520,330 531,1295,312 (5) * (3) * *
(5 → 15) (5→ 15) (5→ 15) (5→ 15) (5→ 15) (5→ 15) (15)288,359,217 (8)20,107,9

125 143,193,84 121,169,84 102,131,82 146,230,84 122,156,84 110,140,73 (4) * (4) * *
(4 → 6) (4→ 8) (4→ 10) (4→ 6) (4→ 8) (4→ 10) (10)83,110,49 (6)62,142,9

468 623,1842,252 623,1 842,252 623,1 842,252 603,1 740,252 603,1 740,252 603,1 740,252 (15)603,1 740,252 * *
(15→ 15) (15→ 15) (15→ 15) (15→ 15) (15→ 15) (15→ 15)

1854 2 719,4 340,1 173 2 768,4 234,956 2 419,3 953,874 2 710,4 165,1 347 2 725,3 990,1 096 2 523,3 947,1 060 (35) * * *
(35→ 47) (35→ 47) (35→ 47) (35→ 47) (35→ 47) (35→ 47) (47)611,838,539
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Table 2. Average, maximum, and minimum number of iterative solver iterations per linear
system along homotopy curve for thin shell problem (Gill-Murray preconditioner)

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6 GS FGS Q

55 80,1 239,1 57,888,1 44,748,1 * * * * * *
(8 → 20) (8→ 20) (8→ 24)

119 6,134,1 6,134,1 6,134,1 6,140,1 6,140,1 6,140,1 6,140,1 * *
(5 → 5) (5→ 5) (5→ 5) (5→ 5) (5→ 5) (5→ 5) (5)

1 239 3,14,1 3,14,1 3,14,1 * * * * * *
(12→ 20) (12→ 20) (12→ 20)

Table 3. Average, maximum, and minimum number of iterative solver iterations per linear
system along homotopy zero curve for lamella dome problem (Gill-Murray preconditioner)

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6 GS FGS Q

21 22,452,1 19,536,1 16,528,1 23,508,1 18,387,1 * * * *
(4 → 10) (4→ 12) (4→ 10) (4→ 10) (4→ 12)

69 38,1 374,1 34,1 347,1 35,1 576,1 40,1 331,1 39,1 442,1 * * (4) * *
(8 → 18) (8→ 18) (8→ 18) (8→ 18) (8→ 18) (9)3,75,1

An adaptive strategy is especially useful when the degree of difficulty of linear systems in
a sequence varies, and it is hard to predict what value ofk is needed for convergence of
GMRES(k) on all the linear systems. Even for a small shell problem (n = 55),k can vary
between 8 and 20, and the number of iterations can vary between a low of 1 and a high
of 1 239. The AGH:4 adaptive strategy on one of the matrices from the ‘vref’ circuit is
shown in Figure 8, where a circle indicates an increase in the subspace dimension (k = 8
initially). The adaptive strategy is invoked for the first time rather early—to jump off the
near-stagnation ‘plateau’ after the 24th iteration. The subspace dimension is increased once
more (after 172 iterations), which suggests that AGH:4 has enough vectors to solve the
system within the iteration limit. Note that a smaller iteration limit would cause AGH:4 to
increase the subspace dimension quicker.

For every circuit problem, GS withk the maximum restart value produced by the adaptive
strategy converges faster than AGS or AGH. However, neither AGS nor GS always con-
verges for the shell problems (Table 2) withn = 55, 1 239, due to the failure of the modified
Gram–Schmidt process to accurately orthogonalize the Krylov subspace basis. When the
vectors encountered in the orthogonalization process become increasingly nearly linearly

Table 4. Iterative solver execution time in seconds for circuit problems (ILU(0) preconditioner)

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6 GS FGS

31 0.66 0.55 0.55 0.40 0.36 0.36 0.18 1.53

59 0.50 0.45 0.46 0.33 0.31 * 0.08 *
67 3.70 3.53 2.96 1.97 2.09 1.82 0.55 11.04

125 1.51 1.34 1.18 0.98 0.81 0.74 0.56 14.56
468 11.45 11.46 11.45 5.39 5.39 5.38 5.32 *

1854 383.60 386.29 338.76 133.17 133.04 123.31 32.98 *
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Table 5. Iterative solver execution time in seconds for thin shell problem (Gill-Murray
preconditioner)

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6 GS

55 25.82 19.68 14.53 * * * *
119 2.70 2.71 2.69 2.43 2.42 2.41 2.44

1 239 111.40 107.12 100.90 * * * *

Table 6. Iterative solver execution time in seconds for lamella dome problem (Gill-Murray
preconditioner)

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6 FGS

21 2.24 1.89 1.66 1.74 1.39 * *
69 29.45 25.93 27.27 24.26 23.64 * 38.86

Figure 8. Effect of adaptive strategy on residual norm
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dependent, the orthogonalization error of the modified Gram–Schmidt process grows with
the number of vectors orthogonalized. For example, AGS:6 fails on all lamella dome prob-
lems whereas AGS:2 and AGS:4 succeed (Table 3). The same situation is encountered for
the circuit problem withn = 59. All these failures just mentioned ensue from the estimated
condition number of the GMRES least squares problem indicating numerical singularity.
AGH successfully passes the condition number test on all the problems, producing a more
accurate orthogonal basis for the Krylov subspace.

Table 7 shows the AGS and AGH convergence traces for a typical linear system solution
along the equilibrium curve for a thin shell problem. The (preconditioned) matrixA of this
particular linear system has condition number 1.15× 1010, inertia(4, 0, 52), and smallest
eigenvalue−8.014. Table 7 reports the recursively maintained (computed) GMRES residual,
the exact (calculated in 128-bit arithmetic) residual, and the estimated condition number of
the GMRES least-squares problem at the end of each iteration for AGS and AGH. The first
iteration in each restart cycle is shown in bold face type, and the adaptive strategy was not
invoked on this system. There are several observations from Table 7: (1) the performances of
AGS and AGH are almost indistinguishable until the exact residual norm becomes smaller
than cond(A)u≈2.5×10−6, which is consistent with theoretical results in [10]. (2) However,
much higher accuracy is consistently achievable by AGH on a wide range of qualitatively
different problems (the linear systems along the homotopy zero curves for the problems
in Sections 3.1–3.3 are fundamentally different), as proven by the results in Tables 1–6.
The right hand sides, coming from nonlinear normal flow iteration corrections, are not
‘special’ in any way whatsoever. (3) When the computed residual norm for AGS reaches
2(cond(A) u), there is a pronounced oscillation of the true residual norm, and stagnation
of the computed residual norm. At this point, AGH is behaving differently, producing a
computed residual norm small enough to terminate the current restart cycle before the
GMRES least-squares problem becomes ill-conditioned enough to trigger the condition
number test. This behaviour of AGH relative to AGS, shown in Table 7, occurred consistently
on all the test problems where AGS failed. (4) With the condition number test turned off,
AGH always reached a higher accuracy solution, but AGS frequently completely stagnated
and did not. For this particular linear system, both AGS and AGH converge to a higher
accuracy solution, but AGS does so at a cost of more iterations, which is caused by stagnation
of its computed residual norm. For larger subspaces, such a stagnation severely impedes
the convergence of AGS.

AGH never fails, but at a cost of more CPU time. For example, good candidates for a
CPU time comparison (Tables 1 and 4) are AGH:4, AGS:4 for then = 31 circuit problem
and AGH:2, AGS:2 for then = 59 circuit problem, since they exhibit similar adaptive
behavior in terms of iteration counts. In both cases, AGS outperforms AGH only by a factor
of 1.5. This factor varies slightly depending on the performance of the adaptive strategy
and the orthogonalization accuracy for a particular problem. If the maximum number of
AGS iterations is large relative ton (e.g., the dome problem withn = 69), then AGH is
only a little slower than AGS (Table 6), but for largen (n = 1 854 circuit problem), AGH is
slower than AGS by a factor of 2.8 and also takes more iterations (Tables 1 and 4). When a
high accuracy solution is required, it is hard to predict which orthogonalization procedure
will lead to the smallest number of iterations. For example, from Table 1, AGH produces a
lower maximum number of iterations than AGS for some cases but not all cases.

The number of restart cycles in AGMRES(k) depends on the increment valuem. Tables
1–3 indicate that even a small increment in the restart value leads to convergence. However,
if the increment value is too small, often extra restart cycles are executed, which increases
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Table 7. Convergence trace for a typical system from thin shell problem (n = 55) comparing
AGS with AGH

AGS:2(25) AGH:2(25)

j computed exact cond(AVj ) computed exact cond(AVj )
residual residual residual residual

1 9.88233703+ 1 9.88233703+ 1 1.00000000+ 0 9.88+ 1 9.88+ 1 1.00+ 0
2 8.41201033+ 0 8.41201033+ 0 2.71517580+ 3 8.41+ 0 8.41+ 0 2.72+ 3
3 5.30062772+ 0 5.30062772+ 0 3.60300441+ 4 5.30+ 0 5.30+ 0 3.60+ 4
4 6.00276476− 1 6.00276476− 1 2.36085135+ 5 6.00− 1 6.00− 1 2.36+ 5
5 2.09306671− 1 2.09306671− 1 8.30979753+ 6 2.09− 1 2.09− 1 8.31+ 6
6 1.66690256− 1 1.66690256− 1 8.53997763+ 6 1.67− 1 1.67− 1 8.54+ 6
7 9.14942978− 2 9.14942978− 2 5.08538248+ 7 9.15− 2 9.15− 2 5.09+ 7
8 8.73673945− 2 8.73673947− 2 1.38782061+ 9 8.73− 2 8.73− 2 1.39+ 9
9 8.71466153− 2 8.71466144− 2 1.41042577+ 9 8.73− 2 8.73− 2 1.40+ 9

10 3.93514895− 3 3.93514905− 3 3.81499136+ 9 3.94− 3 3.94− 3 3.82+ 9
11 7.93411548− 8 3.28110407− 7 1.40706496+ 10 1.50− 7 1.82− 6 1.41+ 10
12 3.28744409− 9 2.94899177− 7 1.40738642+ 10 4.98− 18 2.48− 7 1.41+ 10
13 3.28744385− 9 2.94772120− 7 3.21019087+ 15 2.03− 7 2.03− 7 1.00+ 0
14 2.84586612− 10 3.62878483− 7 8.32790167+ 18 1.85− 7 1.85− 7 6.66+ 4
15 2.84586612− 10 3.62900605− 7 8.32790210+ 18 1.78− 7 1.78− 7 3.25+ 5
16 3.76425255− 11 1.67507226− 5 9.84930800+ 21 3.24− 8 3.24− 8 4.29+ 5
17 2.73041662− 11 1.67328247− 5 8.91283895+ 21 7.02− 9 7.02− 9 1.30+ 7
18 2.73041608− 11 1.67581289− 5 8.91305834+ 21 6.93− 9 6.93− 9 3.09+ 7
19 6.82351657− 13 6.90349476− 7 9.53171000+ 22 4.46− 9 4.46− 9 1.50+ 8
20 6.82351657− 13 6.92385648− 7 9.53179594+ 22 4.46− 9 4.46− 9 6.07+ 8
21 6.72452102− 13 6.54577897− 7 9.83975191+ 22 4.38− 9 4.38− 9 9.04+ 8
22 6.70811951− 13 6.48248321− 7 9.88983042+ 22 8.20− 10 8.20− 10 5.39+ 9
23 6.70811951− 13 6.50677103− 7 9.89048681+ 22 2.24− 14 7.38− 13 2.58+ 10
24 6.58769415− 13 4.69784705− 7 1.25798140+ 23 7.37− 13 1.01− 12 1.00+ 0
25 6.58769415− 13 4.73672603− 7 1.25802892+ 23 3.61− 13 3.30− 13 1.17+ 4
26 4.70128524− 7 4.70128328− 7 1.00000000+ 0 3.07− 13 6.31− 13 1.01+ 5
27 1.87736873− 7 1.87736870− 7 9.59415345+ 3 3.28− 14 7.34− 13 2.56+ 5
28 1.11797857− 7 1.11797808− 7 6.15064900+ 4 7.33− 13 6.52− 13 1.00+ 0
29 1.62744063− 8 1.62744158− 8 3.12694899+ 5 2.19− 13 3.52− 13 6.67+ 3
30 5.34499291− 9 5.34499087− 9 9.40826259+ 6 converged
31 5.29674513− 9 5.29674296− 9 5.47342000+ 7
32 3.54672002− 9 3.54672030− 9 2.69515192+ 8
33 1.02373805− 9 1.02370991− 9 4.03740084+ 9
34 9.69052509− 10 9.69016629− 10 1.23940329+ 10
35 5.77211087− 10 5.77211328− 10 1.30139651+ 10
36 8.28643039− 14 6.05887230− 13 2.72026861+ 10
37 6.05884655− 13 6.04524129− 13 1.00000000+ 0
38 4.30512161− 14 2.45523317− 13 2.43627507+ 3
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the average number of iterations in all cases, comparingm = 2 andm = 6. Asm grows,
the execution time of smaller test problems decreases, since the cost of an extra iteration
in a restart cycle is essentially the same as the cost of earlier ones and the later iterations
sometimes contribute the most towards convergence as noted in [21]. For large problems
(n = 1 854), the cost of the later added iterations becomes significant and increases CPU
time (compare AGH:2 and AGH:4 forn = 1 854 in Table 4). Thus, some moderate value
for m seems best for the proposed adaptive strategy.

It is clear from the data presented that AGMRES(k) outperforms both flexible GMRES(k̂)
and QMR. Since restarted flexible GMRES(k̂) requires twice as much memory as restarted
AGMRES(k), the restart value for FGS is taken ask̂ = k/2. Whenever FGS converges, it
requires more work per iteration than AGH because a new preconditioner is computed at
each FGS iteration. The QMR algorithm, subroutine DUQMR from QMRPACK [6], fails
to find a solution with the required accuracy for any of the problems, but can solve some
linear systems along the homotopy zero curve if the error tolerance is relaxed.

5. Conclusions

For applications requiring high accuracy linear system solutions, the adaptive GMRES(k)
algorithm proposed here, which is based on Householder transformations and monitoring
the GMRES convergence rate, outperforms several standard GMRES variants and QMR.
The superiority is not in CPU time or memory requirements, but in robustness as a linear
system solution ‘server’ for a much larger nonlinear analysis ‘client’ computation. The extra
cost of Householder transformations is well justified by the improved reliability, and the
adaptive strategy is well suited to the need to solve a sequence of linear systems of widely
varying difficulty. In the context of large scale, multidisciplinary, nonlinear analysis it is
hard to imagine not wanting the various components to be adaptive.

The high accuracy requirement causes types of failures in GMRES not usually seen in
moderate accuracy uses of GMRES, and monitoring condition number estimates and the
onset of stagnation within GMRES becomes crucial. Furthermore, ‘sanity’ checks (e.g.,
residual norm should be nonincreasing) within a GMRES algorithm must be modified for
high accuracy. For instance, the limit on the number of iterations must be increased, and
depending on other factors, an increasing residual norm may or may not dictate an abort
(such details are in the pseudocode in Section 2). Finally, the three test problems are rather
different, so the details of AGMRES(k) have not been tuned to one particular class of
problems.

Future work should investigate a strategy for both increasing and decreasing the Krylov
subspace dimension depending on measures of progress. Ideally the accuracy requested
of the linear solver should match the accuracy actually required by the calling nonlinear
analysis program, although in large scale computation it may be extremely difficult to
estimate this minimum required accuracy.
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